View(phone)
What is the relation between Phone screen and Phone price?
In this analysis I will be comparing the relationship between the two. The test used in this analysis is linear regression. I would be interpreted with slope and y intercept. The slope is interpreted as, “the change in the average y-value for a one unit change in the x-value.”
There are two equations used in linear regression
\[ {Y_i} = \overbrace{\beta_0}^\text{y-int} + \overbrace{\beta_1}^\text{slope} * {X_i} + \epsilon_i \quad \text{where} \ \epsilon_i \sim N(0, \sigma^2) \]
\[ {\hat{Y}_i} = \overbrace{b_0}^\text{est. y-int} + \overbrace{b_1}^\text{est. slope} * {X_i} \]
\[ \left.\begin{array}{ll} H_0: \beta_1 = 0 \\ H_a: \beta_1 \neq 0 \end{array} \right\} \ \text{Slope Hypotheses} \]
\[ \left.\begin{array}{ll} H_0: \beta_0 = 0 \\ H_a: \beta_0 \neq 0 \end{array} \right\} \ \text{Intercept Hypotheses} \]
pander(phone %>%
summarise(Correlation = cor(Screen, Price, use="complete.obs")))
Correlation |
---|
0.5688 |
pander(phone %>%
group_by(Screen) %>%
summarise(avgprice = mean(Price)))
summarise()
ungrouping output (override with .groups
argument)
Screen | avgprice |
---|---|
4.7 | 400 |
6.1 | 915 |
6.2 | 1400 |
6.5 | 550 |
6.6 | 675 |
6.8 | 588 |
6.9 | 1300 |
7.6 | 2000 |
mylm <- lm(Price ~ Screen, data = phone)
pander(summary(mylm))
Estimate | Std. Error | t value | Pr(>|t|) | |
---|---|---|---|---|
(Intercept) | -1601 | 1215 | -1.317 | 0.2202 |
Screen | 390.6 | 188.3 | 2.075 | 0.06784 |
Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
---|---|---|---|
11 | 423.3 | 0.3235 | 0.2484 |
par(mfrow = c(1,3))
plot(mylm, which = 1:2)
plot(mylm$residuals)
ggplot(phone, aes(x = Screen, y = Price)) +
geom_point() +
geom_smooth(method = "lm", se=FALSE) +
theme_bw()
pander(confint(mylm, level = 0.90))
5 % | 95 % | |
---|---|---|
(Intercept) | -3828 | 626.6 |
Screen | 45.48 | 735.7 |
pander(phone, split.tables = Inf)
Screen | Price |
---|---|
6.1 | 1000 |
6.1 | 830 |
6.6 | 750 |
6.5 | 700 |
4.7 | 400 |
6.9 | 1300 |
6.2 | 1400 |
6.8 | 588 |
7.6 | 2000 |
6.5 | 400 |
6.6 | 600 |
\[ \underbrace{\hat{Y}_i}_\text{Price} = \overbrace{-1601}^\text{est. y-int} + \overbrace{390.6}^\text{est. slope} \underbrace{X_i}_\text{Screen} \]
The equation above is derived from the linear regression model. From this equation we can find the price of a phone based on screen size. But from the data you can learn that price is not just based on screen size. So this isn’t a great model to come to a conclusion for phone price.